Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2837, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565566

RESUMO

The adult mammalian brain retains some capacity to replenish neurons and glia, holding promise for brain regeneration. Thus, understanding the mechanisms controlling adult neural stem cell (NSC) differentiation is crucial. Paradoxically, adult NSCs in the subependymal zone transcribe genes associated with both multipotency maintenance and neural differentiation, but the mechanism that prevents conflicts in fate decisions due to these opposing transcriptional programmes is unknown. Here we describe intron detention as such control mechanism. In NSCs, while multiple mRNAs from stemness genes are spliced and exported to the cytoplasm, transcripts from differentiation genes remain unspliced and detained in the nucleus, and the opposite is true under neural differentiation conditions. We also show that m6A methylation is the mechanism that releases intron detention and triggers nuclear export, enabling rapid and synchronized responses. m6A RNA methylation operates as an on/off switch for transcripts with antagonistic functions, tightly controlling the timing of NSCs commitment to differentiation.


Assuntos
Células-Tronco Neurais , Animais , Íntrons/genética , Diferenciação Celular/genética , Neurônios , Neurogênese/genética , Mamíferos
3.
Oncologist ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438322

RESUMO

Adult medulloblastoma (MB) is a rare disease affecting 0.6 persons per million adults over 19 years of age. The SHH-activated/TP53-wild type is the most common subtype, accounting for 60% of adult MBs, being characterized by mutations in PTCH1, SMO, or the TERT promoter. Several small studies demonstrate objective but short-lived responses to SMO inhibitors such as vismodegib or sonidegib. Like other oncogene-addicted solid tumors, detection of the corresponding drivers through liquid biopsy could aid in the molecular diagnosis and monitoring of the disease through less invasive procedures. However, most studies have only evaluated cerebrospinal fluid as the ctDNA reservoir, and very limited evidence exists on the role of liquid biopsy in plasma in patients with primary central nervous system tumors, including MB. We present the case of a 26-year-old patient with a recurrent MB, in which next-generation sequencing (FoundationOne CDx) revealed a mutation in PTCH1, allowing the patient to be treated with vismodegib in second line, resulting in a durable benefit lasting for 1 year. Using an in-house digital PCR probe, the PTCH1 mutation could be tracked in ctDNA during treatment with first-line chemotherapy and while on treatment with vismodegib, demonstrating a precise correlation with the radiological and clinical behavior of the disease.

4.
Sci Rep ; 14(1): 2490, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291230

RESUMO

Understanding the intricate pathogenic mechanisms behind Parkinson's disease (PD) and its multifactorial nature presents a significant challenge in disease modeling. To address this, we explore genetic models that better capture the disease's complexity. Given that aging is the primary risk factor for PD, this study investigates the impact of aging in conjunction with overexpression of wild-type human α-synuclein (α-Syn) in the dopaminergic system. This is achieved by introducing a novel transgenic mouse strain overexpressing α-Syn under the TH-promoter within the senescence-accelerated SAMP8 (P8) genetic background. Behavioral assessments, conducted at both 10 and 16 months of age, unveil motor impairments exclusive to P8 α-SynTg mice, a phenomenon conspicuously absent in α-SynTg mice. These findings suggest a synergistic interplay between heightened α-Syn levels and the aging process, resulting in motor deficits. These motor disturbances correlate with reduced dopamine (DA) levels, increased DA turnover, synaptic terminal loss, and notably, the depletion of dopaminergic neurons in the substantia nigra and noradrenergic neurons in the locus coeruleus. Furthermore, P8 α-SynTg mice exhibit alterations in gut transit time, mirroring early PD symptoms. In summary, P8 α-SynTg mice effectively replicate parkinsonian phenotypes by combining α-Syn transgene expression with accelerated aging. This model offers valuable insights into the understanding of PD and serves as a valuable platform for further research.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Animais , Humanos , Camundongos , Envelhecimento/genética , Envelhecimento/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Camundongos Transgênicos , Degeneração Neural/patologia , Doença de Parkinson/metabolismo , Substância Negra/metabolismo
5.
Nat Commun ; 15(1): 775, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38278798

RESUMO

Accumulation of senescent cells with age leads to tissue dysfunction and related diseases. Their detection in vivo still constitutes a challenge in aging research. We describe the generation of a fluorogenic probe (sulfonic-Cy7Gal) based on a galactose derivative, to serve as substrate for ß-galactosidase, conjugated to a Cy7 fluorophore modified with sulfonic groups to enhance its ability to diffuse. When administered to male or female mice, ß-galactosidase cleaves the O-glycosidic bond, releasing the fluorophore that is ultimately excreted by the kidneys and can be measured in urine. The intensity of the recovered fluorophore reliably reflects an experimentally controlled load of cellular senescence and correlates with age-associated anxiety during aging and senolytic treatment. Interestingly, our findings with the probe indicate that the effects of senolysis are temporary if the treatment is discontinued. Our strategy may serve as a basis for developing fluorogenic platforms designed for easy longitudinal monitoring of enzymatic activities in biofluids.


Assuntos
Envelhecimento , Senescência Celular , Masculino , Feminino , Camundongos , Animais , Envelhecimento/fisiologia , Senescência Celular/fisiologia , beta-Galactosidase , Rim , Corantes Fluorescentes
6.
Int J Mol Sci ; 24(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37958781

RESUMO

The protein kinase C (PKC) family plays important regulatory roles in numerous cellular processes. Saccharomyces cerevisiae contains a single PKC, Pkc1, whereas in mammals, the PKC family comprises nine isoforms. Both Pkc1 and the novel isoform PKCδ are involved in the control of DNA integrity checkpoint activation, demonstrating that this mechanism is conserved from yeast to mammals. To explore the function of PKCδ in a non-tumor cell line, we employed CRISPR-Cas9 technology to obtain PKCδ knocked-out mouse embryonic stem cells (mESCs). This model demonstrated that the absence of PKCδ reduced the activation of the effector kinase CHK1, although it suggested that other isoform(s) might contribute to this function. Therefore, we used yeast to study the ability of each single PKC isoform to activate the DNA integrity checkpoint. Our analysis identified that PKCθ, the closest isoform to PKCδ, was also able to perform this function, although with less efficiency. Then, by generating truncated and mutant versions in key residues, we uncovered differences between the activation mechanisms of PKCδ and PKCθ and identified their essential domains. Our work strongly supports the role of PKC as a key player in the DNA integrity checkpoint pathway and highlights the advantages of combining distinct research models.


Assuntos
Proteína Quinase C , Saccharomyces cerevisiae , Animais , Camundongos , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Mamíferos/metabolismo , DNA , Proteína Quinase C-delta/genética
7.
Appl Immunohistochem Mol Morphol ; 31(10): 682-689, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37751235

RESUMO

Corneal dystrophies are hereditary diseases affecting the corneal tissue; they are bilateral, symmetrical and unrelated to environmental or systemic conditions. Congenital corneal stromal dystrophy is a very rare autosomal dominant dystrophy that is caused by a mutation in the DCN gene that encodes decorin (a proteoglycan of the extracellular matrix). We herein report 4 cases of congenital stromal corneal dystrophy in 2 families, highlighting the previously undescribed histopathologic features, the possible differential diagnosis of this entity and the key role played by decorin staining in its diagnosis.


Assuntos
Distrofias Hereditárias da Córnea , Humanos , Decorina/genética , Distrofias Hereditárias da Córnea/diagnóstico , Distrofias Hereditárias da Córnea/genética , Distrofias Hereditárias da Córnea/patologia , Mutação , Matriz Extracelular/patologia
8.
Cell Death Dis ; 14(8): 500, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542079

RESUMO

In the adult mammalian brain, neural stem cells (NSCs) located in highly restricted niches sustain the generation of new neurons that integrate into existing circuits. A reduction in adult neurogenesis is linked to ageing and neurodegeneration, whereas dysregulation of proliferation and survival of NSCs have been hypothesized to be at the origin of glioma. Thus, unravelling the molecular underpinnings of the regulated activation that NSCs must undergo to proliferate and generate new progeny is of considerable relevance. Current research has identified cues promoting or restraining NSCs activation. Yet, whether NSCs depend on external signals to survive or if intrinsic factors establish a threshold for sustaining their viability remains elusive, even if this knowledge could involve potential for devising novel therapeutic strategies. Kidins220 (Kinase D-interacting substrate of 220 kDa) is an essential effector of crucial pathways for neuronal survival and differentiation. It is dramatically altered in cancer and in neurological and neurodegenerative disorders, emerging as a regulatory molecule with important functions in human disease. Herein, we discover severe neurogenic deficits and hippocampal-based spatial memory defects accompanied by increased neuroblast death and high loss of newly formed neurons in Kidins220 deficient mice. Mechanistically, we demonstrate that Kidins220-dependent activation of AKT in response to EGF restraints GSK3 activity preventing NSCs apoptosis. We also show that NSCs with Kidins220 can survive with lower concentrations of EGF than the ones lacking this molecule. Hence, Kidins220 levels set a molecular threshold for survival in response to mitogens, allowing adult NSCs growth and expansion. Our study identifies Kidins220 as a key player for sensing the availability of growth factors to sustain adult neurogenesis, uncovering a molecular link that may help paving the way towards neurorepair.


Assuntos
Células-Tronco Adultas , Células-Tronco Neurais , Adulto , Animais , Humanos , Camundongos , Células-Tronco Adultas/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Hipocampo/metabolismo , Mamíferos , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo
9.
Neuroscience ; 525: 26-37, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37437796

RESUMO

Cell quiescence is an essential mechanism that allows cells to temporarily halt proliferation while preserving the potential to resume it at a later time. The molecular mechanisms underlying cell quiescence are complex and involve the regulation of various signaling pathways, transcription factors and epigenetic modifications. The importance of unveiling the mechanisms regulating the quiescent state is undeniable, as its long-term maintenance is key to sustain tissue homeostasis throughout life. Neural stem cells (NSCs) are maintained in the subependymal zone (SEZ) niche of adult mammalian brains mostly as long-lasting quiescent cells, owing to multiple intrinsic and extrinsic cues that actively regulate this state. Differently from other non-proliferative states, quiescence is a reversible and tightly regulated condition that can re-activate to support the formation of new neurons throughout adult lifespan. Decoding its regulatory mechanisms in homeostasis and unveiling how it is modulated in the context of the aged brain or during tumorigenesis, could bring us closer to the development of new potential strategies to intervene in adult neurogenesis with therapeutic purposes. Starting with a general conceptualization of the quiescent state in different stem cell niches, we here review what we have learned about NSC quiescence in the SEZ, encompassing the experimental strategies used for its study, to end up discussing the modulation of quiescence in the context of a physiology or pathological NSC dysregulation.


Assuntos
Células-Tronco Adultas , Células-Tronco Neurais , Animais , Neurogênese/fisiologia , Encéfalo , Transdução de Sinais , Células-Tronco Neurais/metabolismo , Mamíferos
10.
iScience ; 26(3): 106202, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36876138

RESUMO

In the adult mammalian brain, most neural stem cells (NSCs) are held in a reversible state of quiescence, which is essential to avoid NSC exhaustion and determine the appropriate neurogenesis rate. NSCs of the mouse adult subependymal niche provide neurons for olfactory circuits and can be found at different depths of quiescence, but very little is known on how their quiescence-to-activation transition is controlled. Here, we identify the atypical cyclin-dependent kinase (CDK) activator RingoA as a regulator of this process. We show that the expression of RingoA increases the levels of CDK activity and facilitates cell cycle entry of a subset of NSCs that divide slowly. Accordingly, RingoA-deficient mice exhibit reduced olfactory neurogenesis with an accumulation of quiescent NSCs. Our results indicate that RingoA plays an important role in setting the threshold of CDK activity required for adult NSCs to exit quiescence and may represent a dormancy regulator in adult mammalian tissues.

11.
Nat Commun ; 14(1): 373, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36690670

RESUMO

Neural stem cells (NSCs) in the adult murine subependymal zone balance their self-renewal capacity and glial identity with the potential to generate neurons during the lifetime. Adult NSCs exhibit lineage priming via pro-neurogenic fate determinants. However, the protein levels of the neural fate determinants are not sufficient to drive direct differentiation of adult NSCs, which raises the question of how cells along the neurogenic lineage avoid different conflicting fate choices, such as self-renewal and differentiation. Here, we identify RNA-binding protein MEX3A as a post-transcriptional regulator of a set of stemness associated transcripts at critical transitions in the subependymal neurogenic lineage. MEX3A regulates a quiescence-related RNA signature in activated NSCs that is needed for their return to quiescence, playing a role in the long-term maintenance of the NSC pool. Furthermore, it is required for the repression of the same program at the onset of neuronal differentiation. Our data indicate that MEX3A is a pivotal regulator of adult murine neurogenesis acting as a translational remodeller.


Assuntos
Células-Tronco Neurais , Neurogênese , Camundongos , Animais , Neurogênese/genética , Neurônios/fisiologia , Células-Tronco Neurais/metabolismo , Diferenciação Celular/genética , Proteínas de Ligação a RNA/metabolismo
12.
Development ; 150(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36633189

RESUMO

Adult neurogenesis is supported by multipotent neural stem cells (NSCs) with unique properties and growth requirements. Adult NSCs constitute a reversibly quiescent cell population that can be activated by extracellular signals from the microenvironment in which they reside in vivo. Although genomic imprinting plays a role in adult neurogenesis through dose regulation of some relevant signals, the roles of many imprinted genes in the process remain elusive. Insulin-like growth factor 2 (IGF2) is encoded by an imprinted gene that contributes to NSC maintenance in the adult subventricular zone through a biallelic expression in only the vascular compartment. We show here that IGF2 additionally promotes terminal differentiation of NSCs into astrocytes, neurons and oligodendrocytes by inducing the expression of the maternally expressed gene cyclin-dependent kinase inhibitor 1c (Cdkn1c), encoding the cell cycle inhibitor p57. Using intraventricular infusion of recombinant IGF2 in a conditional mutant strain with Cdkn1c-deficient NSCs, we confirm that p57 partially mediates the differentiation effects of IGF2 in NSCs and that this occurs independently of its role in cell-cycle progression, balancing the relationship between astrogliogenesis, neurogenesis and oligodendrogenesis.


Assuntos
Inibidor de Quinase Dependente de Ciclina p57 , Impressão Genômica , Fator de Crescimento Insulin-Like II , Células-Tronco Neurais , Neurogênese , Neurônios , Inibidor de Quinase Dependente de Ciclina p57/genética , Células-Tronco Neurais/citologia , Neurônios/citologia , Neurogênese/genética , Fator de Crescimento Insulin-Like II/genética , Animais , Camundongos , Camundongos Endogâmicos C57BL
13.
Cell Mol Life Sci ; 80(1): 36, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36627412

RESUMO

Cell differentiation involves profound changes in global gene expression that often has to occur in coordination with cell cycle exit. Because cyclin-dependent kinase inhibitor p27 reportedly regulates proliferation of neural progenitor cells in the subependymal neurogenic niche of the adult mouse brain, but can also have effects on gene expression, we decided to molecularly analyze its role in adult neurogenesis and oligodendrogenesis. At the cell level, we show that p27 restricts residual cyclin-dependent kinase activity after mitogen withdrawal to antagonize cycling, but it is not essential for cell cycle exit. By integrating genome-wide gene expression and chromatin accessibility data, we find that p27 is coincidentally necessary to repress many genes involved in the transit from multipotentiality to differentiation, including those coding for neural progenitor transcription factors SOX2, OLIG2 and ASCL1. Our data reveal both a direct association of p27 with regulatory sequences in the three genes and an additional hierarchical relationship where p27 repression of Sox2 leads to reduced levels of its downstream targets Olig2 and Ascl1. In vivo, p27 is also required for the regulation of the proper level of SOX2 necessary for neuroblasts and oligodendroglial progenitor cells to timely exit cell cycle in a lineage-dependent manner.


Assuntos
Inibidor de Quinase Dependente de Ciclina p27 , Neurogênese , Fatores de Transcrição SOXB1 , Animais , Camundongos , Ciclo Celular/fisiologia , Diferenciação Celular/fisiologia , Divisão Celular , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Expressão Gênica , Neurogênese/genética , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo
14.
Cancers (Basel) ; 14(12)2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35740557

RESUMO

Molecular testing using blood-based liquid biopsy approaches has not been widely investigated in patients with glioma. A prospective single-center study enrolled patients with gliomas ranging from grade II to IV. Peripheral blood (PB) was drawn at different timepoints for circulating tumour DNA (ctDNA) monitoring. Next-generation sequencing (NGS) was used for the study of isocitrate dehydrogenase 1 (IDH1) mutations in the primary tumor. Beads, Emulsion, Amplification and Magnetics (BEAMing) was used for the study of IDH1 mutations in plasma and correlated with the NGS results in the tumor. Between February 2017 and July 2018, ten patients were enrolled, six with IDH1-mutant and four with IDH1 wild-type gliomas. Among the six IDH-mutant gliomas, three had the same IDH1 mutation detected in plasma (50%), and the IDH1-positive ctDNA result was obtained in patients either at diagnosis (no treatment) or during progressive disease. While the false-negative rate reached 86% (18/21), 15 out of the 18 (83%) plasma-negative results were from PB collected from the six IDH-mutant patients at times at which there was no accompanying evidence of tumor progression, as assessed by MRI. There were no false-positive cases in plasma collected from patients with IDH1 wild-type tumors. BEAMing detected IDH1 mutations in the plasma of patients with gliomas, with a modest clinical sensitivity (true positivity rate) but with 100% clinical specificity, with complete agreement between the mutant loci detected in tumor and plasma. Larger prospective studies should be conducted to expand on these findings, and further explore the clearance of mutations in PB from IDH1-positive patients in response to therapy.

15.
Ther Adv Med Oncol ; 14: 17588359221100863, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35694191

RESUMO

Germline replication-repair deficient (gRRD) gliomas are exceptional events, and only a few of them have been treated with immune checkpoint inhibitors (ICIs). Contrary to sporadic gliomas, where ICIs have failed to show any objective benefit, the very few patients with gRRD gliomas treated with ICIs to date seem to benefit from programmed-death-1 (PD-1) inhibitors, such as nivolumab or pembrolizumab, either in terms of durable responses or in terms of survival. T-cell immunohistochemistry (IHC) and T-cell receptor (TCR) repertoire using high-throughput next-generation sequencing (NGS) with the Oncomine TCR-Beta-SR assay (Thermo Fisher Scientific) were analyzed in pre- and post-nivolumab tumor biopsies obtained from a patient with a Lynch syndrome-associated glioma due to a germline pathogenic hMLH1 mutation. The aim was to describe changes in the T-cell quantity and clonality after treatment with nivolumab to better understand the role of acquired immunity in gRRD gliomas. The patient showed a slow disease progression and overall survival of 10 months since the start of anti-PD-1 therapy with excellent tolerance. A very scant T-cell infiltrate was observed both at initial diagnosis and after four cycles of nivolumab. The drastic change observed in TCR clonality in the post-nivolumab biopsy may be explained by the highly spatial and temporal heterogeneity of glioblastomas. Despite the durable benefit from nivolumab, the scant T-cell infiltrate possibly explains the lack of objective response to anti-PD-1 therapy. The major change in TCR clonality observed after nivolumab possibly reflects the evolving molecular heterogeneity in a highly pre-treated disease. An in-deep review of the available literature regarding the role of ICIs in both sporadic and gRRD gliomas was conducted.

17.
Mol Psychiatry ; 26(11): 6411-6426, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34002021

RESUMO

Several psychiatric, neurologic and neurodegenerative disorders present increased brain ventricles volume, being hydrocephalus the disease with the major manifestation of ventriculomegaly caused by the accumulation of high amounts of cerebrospinal fluid (CSF). The molecules and pathomechanisms underlying cerebral ventricular enlargement are widely unknown. Kinase D interacting substrate of 220 kDa (KIDINS220) gene has been recently associated with schizophrenia and with a novel syndrome characterized by spastic paraplegia, intellectual disability, nystagmus and obesity (SINO syndrome), diseases frequently occurring with ventriculomegaly. Here we show that Kidins220, a transmembrane protein effector of various key neuronal signalling pathways, is a critical regulator of CSF homeostasis. We observe that both KIDINS220 and the water channel aquaporin-4 (AQP4) are markedly downregulated at the ventricular ependymal lining of idiopathic normal pressure hydrocephalus (iNPH) patients. We also find that Kidins220 deficient mice develop ventriculomegaly accompanied by water dyshomeostasis and loss of AQP4 in the brain ventricular ependymal layer and astrocytes. Kidins220 is a known cargo of the SNX27-retromer, a complex that redirects endocytosed plasma membrane proteins (cargos) back to the cell surface, thus avoiding their targeting to lysosomes for degradation. Mechanistically, we show that AQP4 is a novel cargo of the SNX27-retromer and that Kidins220 deficiency promotes a striking and unexpected downregulation of the SNX27-retromer that results in AQP4 lysosomal degradation. Accordingly, SNX27 silencing decreases AQP4 levels in wild-type astrocytes whereas SNX27 overexpression restores AQP4 content in Kidins220 deficient astrocytes. Together our data suggest that the KIDINS220-SNX27-retromer-AQP4 pathway is involved in human ventriculomegaly and open novel therapeutic perspectives.


Assuntos
Hidrocefalia , Animais , Aquaporina 4/genética , Aquaporina 4/metabolismo , Epêndima/metabolismo , Humanos , Hidrocefalia/genética , Hidrocefalia/metabolismo , Lisossomos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Nexinas de Classificação/genética
18.
Front Neurosci ; 15: 666881, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33958987

RESUMO

The adult mammalian brain contains distinct neurogenic niches harboring populations of neural stem cells (NSCs) with the capacity to sustain the generation of specific subtypes of neurons during the lifetime. However, their ability to produce new progeny declines with age. The microenvironment of these specialized niches provides multiple cellular and molecular signals that condition NSC behavior and potential. Among the different niche components, vasculature has gained increasing interest over the years due to its undeniable role in NSC regulation and its therapeutic potential for neurogenesis enhancement. NSCs are uniquely positioned to receive both locally secreted factors and adhesion-mediated signals derived from vascular elements. Furthermore, studies of parabiosis indicate that NSCs are also exposed to blood-borne factors, sensing and responding to the systemic circulation. Both structural and functional alterations occur in vasculature with age at the cellular level that can affect the proper extrinsic regulation of NSCs. Additionally, blood exchange experiments in heterochronic parabionts have revealed that age-associated changes in blood composition also contribute to adult neurogenesis impairment in the elderly. Although the mechanisms of vascular- or blood-derived signaling in aging are still not fully understood, a general feature of organismal aging is the accumulation of senescent cells, which act as sources of inflammatory and other detrimental signals that can negatively impact on neighboring cells. This review focuses on the interactions between vascular senescence, circulating pro-senescence factors and the decrease in NSC potential during aging. Understanding the mechanisms of NSC dynamics in the aging brain could lead to new therapeutic approaches, potentially include senolysis, to target age-dependent brain decline.

19.
STAR Protoc ; 2(2): 100425, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33899012

RESUMO

This protocol provides a flow-cytometry-based procedure to classify and isolate all cells of the adult rodent subependymal zone (SEZ) neurogenic lineage, without the need for reporter mice, into different cell populations, including three neural stem cell (NSC) fractions with molecular signatures that are coherent with single-cell transcriptomics. Additionally, their cycling behavior can be assessed by means of 5-ethynyl-2'-deoxyuridine (EdU) incorporation. Our method allows the isolation of different NSC fractions and the functional assay of their cycling heterogeneity and quiescence-activation transitions. For complete details on the use, execution, and outcomes of this protocol, please refer to Belenguer et al. (2021).


Assuntos
Epêndima/citologia , Citometria de Fluxo/métodos , Células-Tronco Neurais/citologia , Análise de Célula Única/métodos , Transcriptoma/genética , Animais , Técnicas de Cultura de Células , Linhagem Celular , Feminino , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL
20.
Front Endocrinol (Lausanne) ; 12: 630097, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815288

RESUMO

Neurotrophin-3 (NT3), through activation of its tropomyosin-related kinase receptor C (TrkC), modulates neuronal survival and neural stem cell differentiation. It is widely distributed in peripheral tissues (especially vessels and pancreas) and this ubiquitous pattern suggests a role for NT3, outside the nervous system and related to metabolic functions. The presence of the NT3/TrkC pathway in the adipose tissue (AT) has never been investigated. Present work studies in human and murine adipose tissue (AT) the presence of elements of the NT3/TrkC pathway and its role on lipolysis and adipocyte differentiation. qRT-PCR and immunoblot indicate that NT3 (encoded by NTF3) was present in human retroperitoneal AT and decreases with age. NT3 was also present in rat isolated adipocytes and retroperitoneal, interscapular, perivascular, and perirenal AT. Histological analysis evidences that NT3 was mainly present in vessels irrigating AT close associated to sympathetic fibers. Similar mRNA levels of TrkC (encoded by NTRK3) and ß-adrenoceptors were found in all ATs assayed and in isolated adipocytes. NT3, through TrkC activation, exert a mild effect in lipolysis. Addition of NT3 during the differentiation process of human pre-adipocytes resulted in smaller adipocytes and increased uncoupling protein-1 (UCP-1) without changes in ß-adrenoceptors. Similarly, transgenic mice with reduced expression of NT3 (Ntf3 knock-in lacZ reporter mice) or lacking endothelial NT3 expression (Ntf3flox1/flox2;Tie2-Cre+/0) displayed enlarged white and brown adipocytes and lower UCP-1 expression. Conclusions: NT3, mainly released by blood vessels, activates TrkC and regulates adipocyte differentiation and browning. Disruption of NT3/TrkC signaling conducts to hypertrophied white and brown adipocytes with reduced expression of the thermogenesis marker UCP-1.


Assuntos
Adipócitos/citologia , Adipócitos/metabolismo , Tecido Adiposo/citologia , Tamanho Celular , Receptor trkC/metabolismo , Transdução de Sinais , Proteína Desacopladora 1/metabolismo , Tecido Adiposo/irrigação sanguínea , Idoso , Envelhecimento/metabolismo , Animais , Biomarcadores/sangue , Vasos Sanguíneos/metabolismo , Peso Corporal , Diferenciação Celular , Feminino , Humanos , Lipólise , Masculino , Camundongos Transgênicos , Ratos Wistar , Receptores Adrenérgicos beta/metabolismo , Sistema Nervoso Simpático/metabolismo , Proteína Desacopladora 1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...